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Top five cited papers:
1. “Pseudophedrine as a practical chiral auxiliary for the synthesis of highly 
    enantiomerically enriched carboxylic acids, alcohols, aldehydes, and ketones”
    J. Am. Chem. Soc. 1997, 118, 28, 6496-6511

2. “Development of a decarboxylative palladation reaction and its use in a Heck-type
     olefination of arene carboxylates”    
    J. Am. Chem. Soc. 2002, 124, 38, 11250-11251

3. On the mechanism of the palladium(II)-catalyzed decarboxylative olefination of 
    arene carboxylic acids
    J. Am. Chem. Soc. 2005, 127, 29, 10323-10333

4. A Mechanism for the Nucleophilic Activation of Neocarzinostatin
    Tett. Lett. 1987, 28, 39, 4493-4496

5. New and Stereospecific Synthesis of Allenes from Propargylic Alcohols
    J. Am. Chem. Soc. 1996, 118, 18, 4492-4493

Students in academia:
David Gin (Sloan Kettering), Mo Movassaghi (MIT), Seth Herzon (Yale), 
Scott Schaus (Boston U.) Ian Seiple (UCSF), Dionicio Siegel (UCSD)

1981:              B.S. Chemistry
                       Advisor: Prof. William R. Roush (Synthesis)
                       “Antibiotic X-14547A: Total Synthesis of the Right-Hand Half”

1981-1986:     Ph.D., Chemistry, Harvard University
                       Advisor: Prof. E. J. Corey 
                       6 publications, limonoid system and antheridium-inducing factor
                      
Independent Career:

1986-1994:     Assistant and Associate Professor, Caltech 

1994-1998:     Full Professor, Caltech

1998-2002:     Full Professor, Harvard

2007-2010:    Department Chair, Harvard
                      Department of Chemisty and Chemical Biology

Now:              Amory Houghton Professor of Chemistry

2006: Opening of Tetraphase Pharmaceuticals

Current Group (according to group website): 
6 postdocs; 5 graduate students, 1 masters

Research Program:
“Chemical synthesis directed towards amelioration of 
 problems in human health”

Five classes of molecules currently being pursued:
1. Avrainvillamides and Stephacidin B - antiproliferative
2. Cortistatins - anti-angiogenic
3. Daphniglaucins - anti-cancer
4. Tetracyclines - antibiotic
5. Trioxacarcins - antiproliferative

Awards (not listed online):
- Arthur C. Cope Scholar Award (1993)
- ACS Award for Creative Work in Synthetic Organic Chemistry (2002)

154 Total Publications, 9 Patents
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Application to a Practical Synthesis of L-Azatyrosine

· antibiotic, shown to restore normal 
phenotypic behavior to cells bearing 
oncogenic Ras genes

J. Org. Chem. 1996, 61, 813-815
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for Asymmetric Synthesis
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J. Am. Chem. Soc. 1997, 119, 6496-6511
(#1 Most Cited Paper - Web of Science) ACIE, 2012, 51, 4568-4571

· Pseudoephedrine
  amides are easily 
  prepared and frequently
  crystalline.

· LiCl is essential to 
  accelerate the reaction
  and to prevent O-alkylation.

· Alkylation with beta-branched
  primary alkyl iodides and 
  secondary alkyl iodides for the 
  formation of quat. centers is possible,
  although they are quite slow.

· After cleavage, the chiral auxiliary 
  can be reused.

80-97%

80-99% yields
90-98% crude de

n-BuNOH,
1:4 t-BuOH:H2O

reflux
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OLi(solvent)n
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NMe
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R
H

Me

alkyl halide

Proposed Reactive Conformation

(Brown and
Tsukamoto) Due to its use in the synthesis 

of methamphetamine, 
pseudophedrine is heavily
restricted.

Myers recently reported the
utility of pseudophenamine as
an alternative chiral auxiliary 
in alkylation reactions.



DECARBOXYLATIVE OLEFINATION METHOD:

Ar OH
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80 — 120 °C
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Pd(O2CCF3)2 (0.2 equiv.)
Ag2CO3 (3 equiv.)

(1 equiv.) (1.5 equiv.)

+

Mechanistic Studies:

· The decarboxylation step is the rate-determining step of the reaction, and involves intramolecular coordination of an electron-deficient
  Pd-center to the ipso-carbon of the arene. 

· Reactivities differ from Heck coupling:
  · Electron-rich olefins and electron-poor Pd-centers are preferred. 

· TFA ligands play a key role in decarboxylation step and in stabilizaing intermediates formed upon olefin insertion.
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ipso-attack Heck-type coupling

INITIAL MECHANISTIC INSIGHT

· At least one ortho substituent is necessary
· Common side reaction are occur through ortho-palladtion
  and C-H insertion.
· Use of small quantity of DMSO in DMF accelerates reaction
  and prevents ortho-palladation.
· Reaction can be conducted in air and small amounts of water.

· Evidence in support of proposed mechanism:
  · Heating of a solution of ArCO2H with Pd(O2CCH3)2 in DMSO leads to 
    evolution of CO2 and dissapearance (by NMR) of ArCO2H starting
    material. Subsequent addition of styrene led to coupling product.
  · Heating the supposed arylPd species with excess TFA leads to 
    protonolysis.
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  carbon bond.
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JACS, 2002, 124, 11250-11251; JACS, 2005, 127, 10323-10333
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1. Mild Conditions for the Removal of Acid-Labile Protective Groups
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Tett. Lett. 1988, 29, 44, 5609-5612

· Peroxide is stable to isolation 
  and purification, though this
  is not recommended. 
· shown to work for THP
  and trityl groups as well

· Previous methods required neat
  H2O2 at 70 °C

2. One-step Stereospecific Synthesis of Allenes from Propargylic Alcohols
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3. Reductive Coupling of Aldehyde Tosylhydrazones and Alkyllithium Reagents
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· Aldehyde tosyl hydrazones are
  readily available, stable, and
  frequently crystalline.

J. Am. Chem. Soc. 1998, 120, 34

4. Use of TBSH in Modified Wolff-Kishner Reductions and in Synthesis of
    Vinyl Halides
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92%
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82%

J. Am. Chem. Soc. 2004, 126, 17, 5436-5445

· Hydrazine component acts
  as nucleophile in a mitsunobu
  type of inversion
· Spontaneous elimination of 
  p-toluenesulfinic acid and N2
  gives allene. 

· alkyl-tosylhydrazine
  intermediates are often crystalline

· O-nitrobenzenesulfonylhydrazine
  is best.

1. protonation
2. spontaneous elimination   
    of sulfinic acid
3. protodesilylation

· Yields are
  higher when 
  unpurified
  TBSH is used.
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neocarzinostatin (NCS)

OH

OH

O

O

HN
O

H Me

OMe
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dynemicin

Others:
kedarcidin
calicheamicins
esperamicins

designer 
enediynes

· The enediyne antibiotics share many common 
  properties:
  · they are noncovalently associated complexes
    between unstable chromophores and stable proteins.
  · they exhibit potent antitumor properties
  · and they posses DNA-cleaving properties 

· The enediyne antibiotics are characterized by the high
  reactivity of their “enediyne” chromophore components.
· This high reactivity makes the enediynes a sythetic 
  challenge, but it is also a driving force in their DNA-
  cleaving abilities. 

· in situ, they are hypothesized to undergo an activation
  event leading to cycloaromatization and formation
  of a diradical that would be positioned to cleave DNA.

activation cycloarom.
and diradical

formation DNA Cleaved
DNA

J. Am. Chem. Soc. 1991, 113, 695-696
Nicolaou, K. C. J. Med. Chem. 1996, 39, 11

Neocarzinostatin
· NCS was isolated as a non-covalently associated mixture of the chromophore shown above and a 113 amino acid apoprotein. NCS itself is rather unstable.
· The Myers group has published 22 papers detailing their biological and synthetic studies of neocarzinostatin.

A proposed route for activation of NCS
and subsequent DNA cleavage.
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J. Am. Chem. Soc. 1991, 113, 695-696
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· Dynemicin A displays potent in vitro and in vivo cytotoxicity against many murine   
  and human tumor cell lines, and it exhibits potent antibacterial activity in vivo with
  low levels of toxicity. 

· Dynemicin A is distinctive amongst the ene-diyne natural products due to its
  anthraquinone functionality that is believed to aid in the molecules’ anticancer
  properties by intercalating the DNA that it is bound to. 
· The anthraquinone moiety is also believed to be the initial site of reduction in the
  activation of dynemicin for DNA-cleavage.

dynemicin AOH

1:1
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1. J. Am. Chem. Soc. 1997, 119, 6072-6094
2. J. Org. Chem. 1985, 50, 4877-4879
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Bu3SnH, Pd(PPh3)2Cl2
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A concise synthesis of (+)-tunicamycin V

1. J. Am. Chem. Soc. 1991, 113, 9661
2. J. Am. Chem. Soc. 1993, 115, 2036-2038

Synthesis of the undecose core (tunicaminyluracil) were described in a previous publication.1
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· The tunicamycins inhibit various enzymatic processes involving the formation of phopholipid-linked intermediates.
· As a result, the tunicamycins elicit a range of biological responses including antimicrobial, antifungal, antiviral, and antitumor activities.

· Studies of the tunicamycins have led to the proposal that they function as bisubstrate analoges for the enzymes they inhibit. 

· Due to their ability to inhibit oligosaccharide synthesis in eukartyotic cells, they have been used as biochemical probes to study the roles of  
  glycosylation on protein structure and function.
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1. J. Am. Chem. Soc. 1991, 113, 9661
2. J. Am. Chem. Soc. 1993, 115, 2036-2038

1. MCPBA, CCl4
-15 °C —> 0 °C; 

DMS, TEA
65 °C, 10h

2. K2CO3, MeOH, rt
74% (3 steps)
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- pthalamide
believed to play
important role 
in maintainin B-
anomer of alcohol

For silicon-mediated reductive coupling
of aldehydes and allylic alcohols:

Myers, A. G. J. Am. Chem. Soc. 1991, 113, 9661-9663
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PhMe, 0°C

3. KF·H2O, MeOH

(+)-tunicamycin V

1. Pd Black
MeOH:formic acid (9:1 )

2. MeOH:formic acid (87:13)
40 °C, 1.5 h

3. 48% aq. HF
MeOH:MeCN (1:1), rt

1
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O

(CH2)9CH(CH3)2

H

H

CDI, MeOH, rt
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Me OH
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MeMe

(-)-tetracycline

PPh3, DEAD

PhMe; NBSH N
O

OBnO
OH

OTBS

H
N

CH3H3C

1. HCl, MeOH
2. IBX, DMSO

3. TBSOTf,
 2,6-lutidine

N
O

OBnO
OTBS

O

H
N

CH3H3C

11 steps, 
10%

1. Charest, M. G., Lerner, C. D., Brubaker, J. D., Siegel, D. R., Myers, A. G. Science, 2005, 308
2. Charest, M. G., Siegel, D. R., Myers, A. G. J. Am. Chem. Soc. 2006, 127, 8292-8293
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OH

OBn

MsCl, TEA; 
Me2NH
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80% (2 steps)
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THF, -100 —> -65 °C
88%

93% ee 93% ee

N
O

OBn

N
Me Me

OH

O

MeO

Org. Lett. 2007, 9, 18, 3523-3525

2nd Generation Route (developed at Tetraphase Pharmacueticals)

· The tetracycline antibiotics inhibit protein synthesis, specifically translation, by preventing attachment of aminoacyl-
  tRNA to the ribosome. They have been widely used in the treatment of bacterial infections, contributing to the 
  emergence of widespread antibiotic resistance. 
· To combat this, Myers first synthesized 6-deoxytetracycline and other analogues of tetracycline, introducing  
  structural variability at the D ring as prior work had indicated that analogues with no C6 hydroxyl group are 
  more resistant to degradation while showing equal or greater potencies.

· Since the initiial synthesis, a 2nd generation route has been developed, and over 2000 analogues have been made,
  many with potent antibacterial activity.

O

reductive transposition of
allyl alcohols:
Tett. Lett. 1996, 37, 28, 4841-4844

Key Precuror en route to 
tetracyclines

nBuLi;

1.3:1 epimeric mixture
80% yield



OH O

Me H
H H

OH
OH

O

NH2

O

OH

N
MeMe

OH O

H H

OH
OH

O

NH2

O

OH

N
MeMe
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OH

OH O

Me H
H H

OH
OH

O

NH2

O

OH

N
MeMe

(-)-6-deoxytetracycline

OH O
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H H

OH
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NH2

O
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(-)-tetracycline

1. Tol, DIPEA, 
95 —> 105 °C

2. Swern conditions

Org. Lett. 2007, 9, 18, 3523-3525
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O
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O
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+
Et

OBoc

OPh

O

Intramolecular
Diels-Alder

1. LDA, TMEDA
THF, -78 °C

81%

2. HF, MeCN
3. H2, Pd

MeOH-dioxane
85% (2 steps)

(-)-6-deoxytetracycline

endo (S)
6.2

exo (S)
1.0

endo (R)
3.5

exo (R)
2.1
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1. Herzon, S. B., Myers, A. G. J. Am. Chem. Soc. 2005, 127, 15, 5342-5344
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ON

N
O
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O

O

(-)-stephacidin B

(+)-avrainvillamide

· Isolated from a fungal culture of Aspergillus ochraceus
· Both inhibit growth of cultured human cancer cells (IC50 ~ 50-100 nM)
· Recent studies show that they readily interconvert in solution.

· The previously reported antiproliferative activity of stephacidin B may
   arise  from its disociation to form avrainvillamide, which may then bind to 
  one or more proteins
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O
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O
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H
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1. Herzon, S. B., Myers, A. G. J. Am. Chem. Soc. 2005, 127, 15, 5342-5344
2. J. Am. Chem. Soc. 2007, 129, 4898-4899
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NMe

H
O

HO
OH

Me2N
cortistatin A

(2.1 +/- 0.4 nM)

NMe

H
O

Me2N

cortistatin J
(46 +/- 36 nM)

NMe

H
O

Me2N

cortistatin L
(32 +/- 11 nM)

NMe

H
O

Me2N

cortistatin K
(112 +/- 45 nM)

HO

Me
OTBSHO

N3

O
H

Common Retrosynthetic
Intermediate

Me
OTBSO

O
H

Me
OTBSTIPSO

H

Me OTBS

TfO

OTIPS

ZnCl+

· More than 10 natural 
  cortistatins have been descri-
  bed since the elucidation of
  cortistatin A structure in 2006.

· Some cortistatins exhibit
  potent and selective 
  cytostatic activity against 
  human umbilical vein
  endothelial cells.

· SAR studies have shown that
  the 7-substituted isoquinoline
  is a key determinant of 
  these phenotypic effects.

· A 2015 Nature paper 
  demonstrates that cortistatin
  A also inhibits mediator 
  kinases, thereby upregulating
  super-enhancer genes
  and having anti-leukaemia 
  activity.

1. Nature Chemistry, 2010, 2, 886-892
2. Nature, 2015, 526, 273

A B C
D
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OTIPS
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1
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Me OTBS
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Me OTBS

2. n-BuLi
(CH2O)n, THF
75% (2 steps)

2. 1, Pd2dba3, S-Phos
NMP, 70 °C

70%
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H
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1. (PPh3)3RhCl
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1. Nature Chemistry, 2010, 2, 886-892

2. LiNEt2, THF
50% (4 steps)

TBAF; PhI(OCOCF3)2
DCM, (CH3)2CHOH

50%

Me
OTBS

H
O

O

Et3SiH
(PPh3)3RhCl

then Py, NBS
70%, >20:1 d.r.

Me
OTBS

H
O

O

Br

1. TMG azide

2. (R)-CBS catalyst
catecholborane
85%, 15:1 d.r.

Me
OTBSHO

N3

O
H

8 steps Cortistatin A Series Precursor

Cortistatin J Series Precursor

Cortistatin K Series Precursor

Cortistatin L Series Precursor

3 Steps

5 Steps

4 Steps

Starting material in 
Nicolau-Chen and
Sorensen syntheses 
of cortistatins.

A-ring
precursor

CD-ring
precursor

1. CsF, PhNTf2
DME
92%

1. TESOTf, PPh3
CHCl3

DCM, 45 °C, 5h
> 95% (11g)

acetone, 0 °C

Common Retrosynthetic
Intermediate
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R
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O

Me2N

cortistatin K system

oxidation R
Me

H
O

Me2N

cortistatin L system

HO

R
Me

H
O

Me2N

HO

R
Me

H
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Me2N

NaO3SO

epoxidation

activation

O

R
Me

H
O

Me2N

HO

OH

R
Me

H
O

Me2N

NaO3SO

1,4-elimination

1,6-elimination

cortistatin A system

cortistatin J system

· Intermediates in the cortistatin L series have been found to undergo facile 
  transformations to form intermediates of the other cortistatin series, possibly 
  suggesting a sequence for late stages of cortistatin biosynthesis.

Biosynthetic Hypothesis:

1. Nature Chemistry, 2010, 2, 886-892
2. Nature, 2015, 526, 273
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Me

OH

OH
H

Trioxacarcin A

· The trioxacarcins are bacterial metabolites that potently inhibit the growth of cultured human 
  cancer cells and bacterial cells. The most potent family member, trioxacarcin A, displays 
  subnanomolar 70% growth inhibition against many human cancer cell lines. 
  · This is believed to be a result of efficient and irreversible alkylation of guanine residues in DNA

· Unusual Chemical Features: 
  · Rigid, highly oxygenated skeleton
  · Fused spiro epoxide 
  · five ketal or hemiketal groups
  · At least one unusual glycosidic residue

· Key features of the synthesis:
  · late-stage glycosylation reactions of differentially protected aglycon substrates allow for facile 
    construction of analogues
  · Identification of appropriate ways to activate and protect the two 2-deoxysugar components, 
    trioxacarcinose A and B, and viable sequencing of glycosidic coupling. 
  · Modularity allows for rapid construction of structurally diverse synthetic analogues

· Most of the analogues produced are active in antiproliferative assays using cultured human cancer 
  cells

Nature Chemistry, 2013, 5, 886-892
Nucleic Acid Res. 2008, 36, 10, 3508-3514 (for crystal structure of trioxacarcin A bound to DNA)
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PNAS, 2011, 108, 17, 6709-6714

8 steps

8 steps 4 steps

Kraus-Sugimoto
cyanophthalide 

annulation

1. Rh(OAc)2
4A MS
DCM, rt

63%
(stereoisomeric

mixture)

2. TEA·3HF
rt, 15 min.

~ 1:1 endo
diastereomers
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Nature Chemistry, 2013, 5, 886-892
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trioxacarcinose B
monoglycoside

GI50 (H460) 767 +/- 74 nM

trioxacarcin A
GI50 (H460) 0.85 +/- 0.36 nM
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GI50 (H460) 4.5 +/- 2.0 nM nM

1. TMSNTf2,
4A MS, 3:1 DCM:Et2O

~60%
2. DDQ

95%

O

SOME ANALOGUES

Modular components
of similar synthetic
complexity: 5

Convergent coupling
reactions: 4

Linear Steps:11


