Radical Approaches to Asymmetric Catalysis

Lewis Acid-Catalyzed Enantioselective Radical Reactions

Shenvi Group Meeting April 18th, 2019

Recent Approaches Merging Photocatalysis/Lewis Acid Catalysis

distortion energy responsible for observed ee

"the substantial energy expenditure required to bend and deform the relatively rigid **Rh** catalyst is responsible for the experimentally observed enantioselectivty" (5.1 kcal/mol)

Houk/Meggars: JACS, 2017, 139, 17902 Wiest/Meggers: JACS, 2017, 139, 8062

Removal of auxiliary: JACS, 2016, 138, 6936

Triplet Sensitized Lewis Acid Catalyzed Radical Additions Yoon, JACS, 2015, 137, 2452

[LSc]* is not excited by photocatalyst (ground state)
Cl⁻ anion effects *ee* (by increasing Sc turnover)

Chiral Chain Transfer Reagents

AcO

SH

OAc

Π

OAc

ÒAc

AcO

AcO

T

AcO

Chiral Stannanes

Other examples of chiral tin hydrides (BINOL) require stoichiometric stannanes and result in only moderate *ee*'s Nanni and Curran *Tet: Asymm,* 1996, *7,* 2417 Metzger *JOC*, 1998, 177

Polarity Reversal Catalysis: Chiral Amino Boranes

Roberts, *J. Chem. Soc., Perkin Trans. 2*, 1993, 665 Roberts, *J. Chem. Soc., Perkin Trans.* 1, 1994, 1033

Ph

Ph

Ι

Π

p-dioxane

p-dioxane

hexane/

(5:1)

88 (80 %ee)

90 (95 %ee)

Shevick

Chiral Chain Transfer Reagents

Enantioselective C-C bond formation via radical thiol catalyst Maruoka, *Nat Chem*, 2014, *6*, 702

PRC in Total Synthesis: Synthesis of (–)-6-*epi*-ophiobolin N Maimone *Science*, 2016, *352*, 1078

Organocatalytic Approaches

Shenvi Group Meeting April 18th, 2019

Radical Organocatalysis via Enamine Oxidation

First report of oxidation of pyrrolidine enamines with metallic salts leads to carbon centered radicals: *JCS Chem Commun*, 1993, 1218

cat. = O Me N Me HCl SOMO (<u>singly occupied molecular orbital</u>) catalysis (Macmillan)

Unsaturated bonds with appropriate leaving group can participate

• All methods use inorganic oxidants

Shevick

Organocatalytic Approaches

TM-Mediated Radical Cross Couplings

TM-Mediated Radical Cross Couplings