Metal Hydride Atom Transfer

Eisenberg, D. C; Norton, J. R. Isr. J. Chem. **1991**, 31, 55–66.

Metal Hydride Atom Transfer

$$\begin{array}{c} \bullet \\ & \bullet \\$$

"hydride transfer" : H nucleus and 2 electrons **H–**

"proton transfer" : H nucleus and 0 electrons **H+**

"hydrogen atom transfer" HAT : H nucleus and 1 electron **H**•

1,5-HAT (Barton nitrite ester, Suárez, HLF reactions etc.)

"metal hydride atom transfer" MHAT (or metal hydride hydrogen atom transfer)

$$R^1$$
 + H-ML_n + ML_n

Metal Hydride Atom Transfer

"outer-sphere" alkene is not part of the ligand sphere

see: Eisenberg, D. C; Norton, J. R. Isr. J. Chem. 1991, 31, 55–66.

"inner-sphere" alkene ligates the metal center

Chirik et al. ACS Catal. 2016, 6, 4105-4109.

M. A. Descamps, *Compt. rend.* **1868**, 67, 330.

adapted from: King and Winfield, *J . Am. Chem. Soc.* **1961**, *83*, 3366

- Iguchi showed that solutions of Co(CN)₅^{3–} absorb hydrogen gas at ambient temperature
- why did this attract interest?
- what is the reduction product?
- the same complex is produced by electrolysis or by "self-reduction" (allowing aqueous solutions to age)

"For about a century, mention has been made from time to time of the liberation of hydrogen gas which occurs when aqueous solutions of cobalt chloride and potassium cyanide are mixed. The reaction was regarded as extraordinary but of little practical value. With the recent interest in the deuterium exchange reaction catalyzed by cobalt cyanide solutions (Ogg, Mills, Weller and Wheeler), and the more general problems of hydrogenation in solution by metal complexes and by hydrogenase (see Halpern or Winfield), it has become important to study the mechanism of H₂ evolution."

• Griffith and Wilkinson observe new PMR signal at 695 cycles/sec (water at 40 Mc/sec); disappears if prepared in deuterium oxide

- High pressures of H₂ allow reduction at low [Co]
- Self-reduction (aging) is very slow to produce 305 mµ peak compared to H₂ reduction

see: King, N. K.; Winfield, M. E. "Reduction of Water to Hydrogen by a Complex Cyanide of Cobalt" *J. Am. Chem. Soc.* 1958, 80, 2060.
Griffith, W. P.; Wilkinson, G. "The Pentacyanohydride Complexes of Cobalt(I) and Rhodium(I)." *J. Chem. Soc.* 1959, 2757.
King, N. K.; Winfield, M. E. "The Liquid Phase Hydrogenation of Cyanocobaltate(II)" *J. Am. Chem. Soc.* 1961, 83, 3366.
Halpern, J.; Pribanic, M. "Hydrogenation of pentacyanocobaltate(II) at high pressures" *Inorg. Chem.* 1970, 9, 2616.

"For about a century, mention has been made from time to time of the liberation of hydrogen gas which occurs when aqueous solutions of cobalt chloride and potassium cyanide are mixed. The reaction was regarded as extraordinary but of little practical value. With the recent interest in the deuterium exchange reaction catalyzed by cobalt cyanide solutions (Ogg, Mills, Weller and Wheeler), and the more general problems of hydrogenation in solution by metal complexes and by hydrogenase (see Halpern or Winfield), it has become important to study the mechanism of H₂ evolution."

see: King, N. K.; Winfield, M. E. "Reduction of Water to Hydrogen by a Complex Cyanide of Cobalt" *J. Am. Chem. Soc.* 1958, 80, 2060.
Griffith, W. P.; Wilkinson, G. "The Pentacyanohydride Complexes of Cobalt(I) and Rhodium(I)." *J. Chem. Soc.* 1959, 2757.
King, N. K.; Winfield, M. E. "The Liquid Phase Hydrogenation of Cyanocobaltate(II)" *J. Am. Chem. Soc.* 1961, 83, 3366.
Halpern, J.; Pribanic, M. "Hydrogenation of pentacyanocobaltate(II) at high pressures" *Inorg. Chem.* 1970, 9, 2616.

Hydrogenation, o-complex, stereochemistry and mechanistic hypothesis

JACS 1962 304.

CATALYTIC HYDROGENATION OF ORGANIC COMPOUNDS BY PENTACYANOCOBALTATE(II)

U. S. INDUSTRIAL CHEMICALS CO. DIVISION OF NATIONAL DISTILLERS AND CHEMICAL CORPORATION CINCINNATI 37, OHIO Jack Kwiatek I. L. Mador Jay K. Seyler

Substrate	Ratio, moles substrate/ Ks[Co(CN)s]	Mole % H1 absorbed ^a	Initial rate of H1 absorp. (ml./min.)	Products
Isoprene	6.7	79	12	$\sim\!\!85\%$ 1,4-, $\sim\!\!15\%$ 1,2-addition
1,3-Cyclohexadiene	7.0	96	60	Cyclohexene
Styrene	2.9	89	21	Ethylbenzene
Tiglic aldehyde	3.4	57	22	α -Methylbutyraldehyde
Methacrylic acid	3.3	97	35	Isobutyric acid
Sorbic acide	3.3	87	57	2-Hexenoic acid
Cinnamic acid ^e	3.3	49	8	β -Phenylpropionic acid

Hydrogenation, σ -complex, stereochemistry and mechanistic hypothesis

Reactions of Hydridopentacyanocobaltate with the Anions of α,β -Unsaturated Acids

threo

could exclude *syn*-addition, unless E/Z isomerization occurs! (spoiler alert: it does)

Reduction is non-stereospecific, independent of isomerization, inconsistent with a coordinative syn-selective hydrogenation

The results presented here lend support to the mechanism proposed by Simandi and Nagy,^{1h,i} and considered by Kwiatek,^{1j} in which the hydride is a hydrogen atom donor which generates the organic free-radical intermediate III. Reduction is completed by attack at the

 α position by a second hydride molecule. Exchange and isomerization involve removal of a hydrogen atom from the β position by either $[Co(CN)_{s}]^{3-}$ or [HCo- $(CN)_{s}]^{3-}$, the latter giving molecular hydrogen which subsequently regenerates the hydride. σ -Complex formation, which is stereospecific, can be formulated either as a concerted addition^{1j} or as collapse of a "cage" at a rate substantially greater than the rate of rotation about the α,β -carbon-carbon single bond.

In accord with this mechanism, the rate of attack by hydride (cf. Table I) is facilitated by α -alkyl groups as these will stabilize the radical III. β Substituents retard the reaction presumably by sterically hindering the approach of the hydride.⁸

A related system: replacement of CN (X) by CO (L)

1. Weil, Friedman, and Wender have observed that deuteration of anthracene or pyrene with DCo(CO)₄ results in rapid isotopic exchange at the positions of addition only.

-196 °C trap, then warm with $C_6H_{10} > 15$ °C: see Orchin JACS 1953 3041

for early mechanistic work, see: Heck JACS 1961 4023.

Do these coordinative pathways explain all the reactivity of HCo(CO)₄?

Feder, H. M.; Halpern, J. JACS 1975, 97, 7186.

DCo(CO)₄ cannot lead to exchange since the nonequivalence of H and D is preserved by the cyclic structures."

Poll:

- A) anthracene cannot coordinate metal centers
- **B**) syn-addition prevents exchange
- C) CO cannot dissociate from Co
- D) coordination leads to hydroformylation

Do these coordinative pathways explain all the reactivity of HCo(CO)4?

 $\begin{array}{c} & & & \\ &$

3. 2-Methylnaphthalene and acenaphthene are hydrogenated more readily than

naphthalene and 9,10-dimethylanthracene more readily than anthracene.

4. Taylor and Orchin observed nearly equal amounts of *cis*- and *trans*-dihydro products from the hydrogenation of 9,10-dimethylanthracene, although only *cis*-9,10-dihydro-9,10-dimethylanthracene was expected. The scheme they used to rationalize this observation was rather elaborate and only applicable to alkyl substituents which possess a-hydrogens.

equimolar mixture of cis- and trans-

Feder, H. M.; Halpern, J. JACS 1975, 97, 7186.

1. Weil, Friedman, and Wender have observed that deuteration of anthracene or pyrene with DCo(C0)₄ results in rapid isotopic exchange at the positions of addition only.

Why is exchange unlikely to proceed through a coordination mechanism?

"Because of microscopic reversibility concerted *cis* addition and elimination of DCo(C0)₄ cannot lead to exchange since the nonequivalence of H and D is preserved by the cyclic structures."

2. Hydroxymethylated compounds are not found among the products of catalytic hydrogenation of PAH, although these are the usual products derived from olefins under oxo conditions above 180 °C.

Two different hypotheses

The failure to obtain cis product exclusively in the hydrogenation of 1 leads us to propose Scheme I. This scheme requires that compound 5 be present, at least at low concentration, as free olefin so that subsequent attack of $HCo(CO)_4$ can occur at either face of the olefin and thus produce both cis and trans isomers. This scheme also requires that the hydrogenolysis of 4 proceed slowly enough to permit competitive elimination to 5. It is, of course, not necessary that the reaction of 5 with HCo(CO)₄ produce 4 again: anti-Markovnikov addition is also possible. In an experiment with the structurally related 1.1-diphenylethene, it was shown that the reaction proceeds smoothly and relatively rapidly with HCo(CO)₄ to give 1,1-diphenylethane. It is likely that this reaction proceeds by anti-Markovnikov addition

 $Ph_2C \longrightarrow Ph_2CHCH_2Co(CO)_4 \longrightarrow Ph_2CHCH_3$

The reaction with 5 may proceed similarly. Pre-

Taylor, P. D.; Orchin, M. JOC 1972, 37, 3913.

Feder, H. M.; Halpern, J. JACS 1975, 97, 7186.

Figure 1. Correlation of relative hydrogenation reactivities at 200° with radical localization energies. The code is as follows: 1, naphthalene; 2, phenanthrene; 3, coronene; 4, chrysene; 5, fluoranthene; 6, pyrene; 7, triphenylene; 8, biphenyl; 9, benzene. (Reactivity of naphthalene \equiv 1). The points for benzene and biphenyl correspond to the relative rates predicted for these substrates by extrapolation of the line drawn through the other points.

for a description of localization energy and correlation to relative rates of addition to aromatic rings, see: Coullson, C. A. J. Phys. Chem. **1955**, 1435.

Polar (hydride, proton) or radical (hydrogen)?

Seminal paper: Sweany, R. L.; Halpern, J. "Hydrogenation of α-Methylstyrene by hydridopentacarbonylmanganese (I). Evidence for a Free-Radical Mechanism" *J. Am. Chem. Soc.* **1977**, *99*, 8335.

Telltale sign: CIDNP

$$-d[C_{6}H_{5}C(CH_{3})=CH_{2}]/dt = k'[C_{6}H_{5}C(CH_{3})=CH_{2}][HMn(CO)_{5}] (2)$$

$$C_{6}H_{5}C(CH_{3})=CH_{2} + HMn(CO)_{5} \stackrel{k_{3}}{\longleftrightarrow} C_{6}H_{5}\dot{C}(CH_{3})_{2}, \dot{M}n(CO)_{5} \stackrel{k'_{3}}{\longrightarrow} C_{6}H_{5}\dot{C}(CH_{3}) + \dot{M}n(CO)_{5} (3)$$

$$C_{6}H_{5}\dot{C}(CH_{3})_{2} + HMn(CO)_{5} \stackrel{fast}{\longrightarrow} C_{6}H_{5}CH(CH_{3})_{2} + \dot{M}n(CO)_{5} (4)$$

$$2\dot{M}n(CO)_{5} \stackrel{fast}{\longrightarrow} Mn_{2}(CO)_{10} (5)$$

Matos, J.; Green, S. A.; Shenvi, R. A. Org. React. 2019, 100, 383-470.

Telltale sign: inverse KIE

the following observations. (1) When DMn(CO)₅ was reacted with $C_6H_5C(CH_3) = CH_2$, the formation of products was accompanied by isotopic exchange, reflected in the accumulation of HMn(CO)₅ and a decrease in the intensity of the CH₃ signal of the unreacted $C_6H_5C(CH_3)=CH_2$, resulting from deuterium incorporation. This exchange is in accord with the requirement of reversibility of step 3 of the proposed mechanism. The extent of the observed exchange suggests that $k_{-3}/k_{3} \gtrsim$ 1. (2) The rate constant for the reaction of DMn(CO) with $C_6H_5C(CH_3) = CH_2$ was found to be larger than that for HMn(CO)₅ $(k_{\rm H}'/k_{\rm D}' \sim 0.4 \text{ at 65 °C})$. In view of the very low initial frequency of the Mn-H bond (~1800 cm⁻¹) relative to that of the C-H bond (\sim 3000 cm⁻¹), such an inverse isotope effect is not unexpected and has indeed been anticipated.¹⁴ Similar inverse isotope effects also have been observed recently in related reactions of HCo(CO)415 and HMn(CO)516 with arenes.

(9) Attention is directed to the similarities between the reactions of HMn(CO)₅ and of HCo(CN)₅³⁻ with styrenes and with α , β -unsaturated compounds.^{8,10,11}

Inverse KIE is unusual! H/D kinetic isotope effect (KIE) Ground State (GS) ZPE is comprised of all degrees of freedom, but affected predominantly by the ZPE stretching frequency along the reaction coordinate Ζ. ΔE_D Transition State (TS) ZPE is comprised of those degrees of freedom orthogonal (on x) to the reaction coodinate z. Н · Generally small primary Ε D kinetic isotope effect, $k_{\rm H}/k_{\rm D}$ between 1 and 7. TS GS (compare to tunneling, page 2)

H/D ZPE differences smaller at TS: lower force constant

Telltale sign: inverse KIE

the following observations. (1) When DMn(CO)₅ was reacted with $C_6H_5C(CH_3) = CH_2$, the formation of products was accompanied by isotopic exchange, reflected in the accumulation of HMn(CO)₅ and a decrease in the intensity of the CH₃ signal of the unreacted $C_6H_5C(CH_3)=CH_2$, resulting from deuterium incorporation. This exchange is in accord with the requirement of reversibility of step 3 of the proposed mechanism. The extent of the observed exchange suggests that $k_{-3}/k_{3} \gtrsim$ 1. (2) The rate constant for the reaction of $DMn(CO)_{5}$ with $C_6H_5C(CH_3) = CH_2$ was found to be larger than that for HMn(CO)₅ $(k_{\rm H}'/k_{\rm D}' \sim 0.4 \text{ at 65 °C})$. In view of the very low initial frequency of the Mn-H bond ($\sim 1800 \text{ cm}^{-1}$) relative to that of the C-H bond (\sim 3000 cm⁻¹), such an inverse isotope effect is not unexpected and has indeed been anticipated.¹⁴ Similar inverse isotope effects also have been observed recently in related reactions of HCo(CO)415 and HMn(CO)516 with arenes.

(9) Attention is directed to the similarities between the reactions of HMn(CO)₅ and of HCo(CN)₅³⁻ with styrenes and with α , β -unsaturated compounds.^{8,10,11}

Leusink, A. J.; Budding, H. A.; Drenth, W. J. Organomet. Chem. 1967, 9, 295.

Fig. 5. Isotope effect for a hydrstannation reaction as a function of the degree of transfer of hydrogen from tin to carbon in the transition state.

Three cases will be distinguished, corresponding with the left hand, the middle and the right hand regions of this figure, respectively:

- (a) the hydrogen is still almost completely attached to tin: the isotope effect will be slightly more than unity;
- (b) the hydrogen-tin bond is broken but the hydrogen-carbon interaction is still weak: the isotope effect will be larger than unity (theoretical value at room temperature: approximately 3.7);
- (c) the hydrogen is completely or almost completely attached to carbon: the isotope effect will be smaller than unity as a result of the large difference between the zero-point energies of the tin-hydrogen and the carbon-hydrogen bonds.

This may be depicted schematically as in Fig. 6.

Fig. 6. Free energies of activation for the transfer of hydrogen and deuterium from tin to carbon (see text). I: initial state; II: transition state. G = Gibbs' free energy; in the Lewis-Randall notation called F.

Could MHAT (low v M–H/D to high v C–H/D) yield a normal KIE?

Poll:

- A) No, ZPEs would be reversed
- B) No, inverse KIE is diagnostic of MHAT
- C) Yes, if TS is not too late
- D) Yes, if rxn is irreversible

Nalesnik, T. E.; Freudenberger, J. H.; Orchin. M. J. Mol. Catal. 1982, 16: 43.

Fig. 3. Effect of extent H and D transfer from Co to C on free energy of inverse isotope effect with Ph₂C=CH₂; (b) normal isotope effect with bifluorenylidine

So, theory allows inverse KIE with a sufficiently late TS or a normal KIE with anything earlier, but there is an alternative interpretation

Telltale sign: inverse KIE

the following observations. (1) When DMn(CO)₅ was reacted with $C_6H_5C(CH_3) = CH_2$, the formation of products was accompanied by isotopic exchange, reflected in the accumulation of HMn(CO)₅ and a decrease in the intensity of the CH₃ signal of the unreacted $C_6H_5C(CH_3)=CH_2$, resulting from deuterium incorporation. This exchange is in accord with the requirement of reversibility of step 3 of the proposed mechanism. The extent of the observed exchange suggests that $k_{-3}/k_{3} \gtrsim$ 1. (2) The rate constant for the reaction of DMn(CO) with $C_6H_5C(CH_3) = CH_2$ was found to be larger than that for HMn(CO)₅ $(k_{\rm H}'/k_{\rm D}' \sim 0.4 \text{ at 65 °C})$. In view of the very low initial frequency of the Mn-H bond ($\sim 1800 \text{ cm}^{-1}$) relative to that of the C-H bond (\sim 3000 cm⁻¹), such an inverse isotope effect is not unexpected and has indeed been anticipated.¹⁴ Similar inverse isotope effects also have been observed recently in related reactions of HCo(CO)415 and HMn(CO)516 with arenes.

(9) Attention is directed to the similarities between the reactions of HMn(CO)₅ and of HCo(CN)₅³⁻ with styrenes and with α,β-unsaturated compounds.^{8,10,11}

 $-d[C_{6}H_{5}C(CH_{3})=CH_{2}]/dt = k'[C_{6}H_{5}C(CH_{3})=CH_{2}][HMn(CO)_{5}]$ = $k_{3}k'_{3}/(k_{-3}+k'_{3})[C_{6}H_{5}C(CH_{3})=CH_{2}][HMn(CO)_{5}]$

 $dP/dt = k'_3$ [radical pair]

MHAT allows specific predictions to be made: branched hydroformylation

J. Organomet. Chem. **1985**; *279,* 165. CO pressure: H–Mn(CO)₅ hydrometallation of dienes: JACS **1987**, 1995.

Bockman, T.M.; Garst. J. F.; King. R.B.; Marko. L.; Ungvary, F. *J. Organomet. Chem.* **1985**; *279*, 165.

"In addition, after more than one minute. some runs in C_6D_6 , show the kind of line-broadened deterioration of the NMR spectra that would he expected If paramagnetic species were present. Paramagnetic species greatly enhance proton spin-lattice relaxation times, causing polarization to disappear rapidly. In view of these factors, it might be considered remarkable that any CIDNP can be detected from HCo(CO)-styrene reactions."

Other implication is that polarization is carried through multiple steps, which then must be fast. These could be radical steps, but the presence of polarization in ethylbenzene (reduction path) indicates CIDNP from the first step, consistent with Halpern's experiments.

"no alternative explanation for CIDNP is considered to be viable" not entirely true: see para-hydrogen and the "monday morning effect"

BDEs (we are not invoking $H_{(sol)}$)

Tilset, M.; Parker, V. D. "Solution Homolytic Bond Dissociation Energies of Organotransition-Metal Hydrides" J. Am. Chem. Soc. 1989, 111, 6711-6717.

Table II. Metal Hydride Brønsted Acidity and Bond Dissociation Data in

					Recombination Rate Constants, and Calculated Kinetic Potential			Aceto	Acetonitrile					
					Shifts						$E_{}(M^{-})$ vs	м-н	1	M-H BDE, kcal/mol
			ΔG °		compound	$E_{ox}(M^{-})^{a}$	$k_{dim}{}^{b}$	$E_{\rm corr}^{c}$	entry	compd	$(\mathrm{H^+/H_2})_{\mathrm{AN}}$	pK _a ^a	Ъ	lit. data
Γ	M-H(sol)	\rightarrow M ⁻ (sol) + H ⁺ (sol)	2.301 <i>RT</i> pK _a	(4)	$(\eta^5 - C_5 H_5) Cr(CO)_3^-$	-0.688 ^d	2 2 10%	0.000	1	$(\eta^5 - C_5 H_5) Cr(CO)_3 H$	-0.639	13.3	54	(5 + 6 9
	M⁻(sol)	\rightarrow M [•] (sol) + e ⁻	FE° _{ox} (M ⁻)	(5)	$(\eta^{5}-C_{5}H_{5})Mo(CO)_{3}^{-1}$ $(\eta^{5}-C_{5}Me_{5})Mo(CO)_{3}^{-1}$ $(\eta^{5}-C_{5}H_{-})W(CO)_{-1}^{-1}$	-0.501 -0.709	3×10^{98} 1×10^{98}	0.116	2	(ŋº-C3H3)M0(CO)3H	-0.336	13.9	62	$65 \pm 6,^{-}$ $66 \pm 8,^{37}$ 66 ± 1.5^{38}
	H ⁺ (sol)	\rightarrow H ⁺ (aq)	$-\Delta G \circ_{tr}(H^+)$	(6)	$(\eta^{5}-C_{5}H_{5})W(CO)_{2}PMe_{3}^{-1}$	-1.225	1×10^{98}	0.106	3	$(\eta^{5}-C_{5}Me_{5})Mo(CO)_{3}H$	-0.554 ^d	17.1	61	00 <u>-</u> 110
	H+(aq) +	$e^- \rightarrow 0.5 H_2(g)$	0	(7)	$(\eta^{3}-C_{5}H_{5})Fe(CO)_{2}^{-}$ $(\eta^{5}-C_{5}H_{5})Ru(CO)_{2}^{-}$	-1.352 -1.057	3.2×10^{9} 3×10^{9}	0.117 0.116	5	$(\eta^{5}-C_{5}H_{5})W(CO)_{2}PMe_{3}H$	-1.070 ^d	26.6	62	80.7 ²
	0.5H ₂ (g)	→ H•(g)	$\Delta G^{\circ}_{f}(\mathrm{H}^{\bullet})_{g}$	(8)	$Mn(CO)_5^-$ $Mn(CO)_PPh_5^-$	-0.555	$9.5 \times 10^{8 k}$	0.106	6	Mn(CO)5H	-0.400	14.1°	60	65, ²⁴ 51, ¹¹ 63 ²¹
1	H•(g)	→ H•(sol)	$\Delta G^{\circ}_{sol}(\mathrm{H}^{\bullet})$	(9)	$Re(CO)_5^-$ Co(CO)_7^-	-0.690	$3.7 \times 10^{9 k}$ $4.2 \times 10^{8 m}$	0.118	7 8	$Mn(CO)_4PPh_3H$ $Re(CO)_5H$	-0.754 -0.523	20.4 21.1	61 67	
1	M-H(sol)	\rightarrow M [•] (sol) + H [•] (sol)	BDE	(10)	$Co(CO)_3P(OPh)_3^-$	-0.489	9×10^{7}	0.086	9 10	$(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}H$ $(\eta^{5}-C_{5}H_{5})Ru(CO)_{2}H$	-1.186	19.4 20.2	50 57	
BDE	E = 2.301R	$TpK_a + FE^{\circ}_{ox}(M^{-}) - \Delta G^{\circ}$	$_{\rm tr}({\rm H}^+) + \Delta G^{\circ}_{\rm f}({\rm H}^+)$) _g +	$HFe(CO)_4^-$	-0.403	$4 \times 10^{8 p}$	0.099	11 12	Fe(CO) ₄ H ₂ Co(CO) ₄ H	-0.255 ^d -0.123 ^d	11.4 8.3	60 59	<65 ²
			$\Delta G \circ_{sol}(\mathbf{H}$	•) (11)					13 14	Co(CO) ₃ P(OPh) ₃ H Co(CO) ₃ PPh ₃ H	-0.354 -0.607 ^d	11.3 15.4	58 57	

Table I. Metal Anion Oxidation Potentials, Metal Radical

cf. cyclohexane C-H: 96 kcal/mol; H₃CS-H: 88 kcal/mol; nBu₃Sn-H: 78 kcal/mol; Co(CO)₄H: 58 kcal/mol

Effects of neither phosphine or phosphite substitution nor permethylation of the cyclopentadienyl ring on the M-H bond energies could be detected within the error limits of the method. (but these substitution reactions affect rate of MHAT)

BDE is important because it influences rate of reaction with alkene, much like pKa influences rate of reactivity with a base

Correlation of M–H BDE and rate: not the whole story!

Bullock, R. M.; Samsel, E. G. J. Am. Chem. Soc. 1990, 112, 6886–6898.

Dissociation Energies of the in Ti Dona, and Relative x3 values							
metal hydride	temp, °C	k1,ª M-1 s-1	BDE, ^b kcal/mol	k3 ^c			
HCr(CO) ₃ Cp	22	$3.4(3) \times 10^{-3}$	62	1			
HFe(CO) ₂ Cp	22	4.3(3) × 10 ⁻⁴	58	5			
HMn(CO) ₅	25	$7.4(5) \times 10^{-6d}$	68	7			
$HFe(CO)_2(C_5Me_5)$	60	9.6(5) × 10 ⁻⁴		94			
HMo(CO) ₁ (C,Me,)	60	$6.3(4) \times 10^{-5}$	69	3.8			
HMo(CO) ₃ Cp	60	$8.3(1) \times 10^{-5}$	70	93			
cis-HMn(CO) ₄ PPh ₃	60	$9.0(2) \times 10^{-5}$	69	1			
HMo(CO) ₃ Cp	100	$2.6(1) \times 10^{-3}$	70	16			
$HMo(CO)_2(PMe_3)Cp$	100	1.2(1) × 10 ⁻⁴		1			
HW(CO) ₃ Cp	100	$6.2(5) \times 10^{-5}$	73	5			
HRu(CO) ₂ Cp	100	e	65				
HRe(CO) ₅	105	f	75				

Ср

1

Table II. H[•] Transfer Rate Constants $k_{\rm H}$ (to Tris(*p*-tert-butylphenyl)methyl Radical (1) at 25 °C in Toluene) and Bond Dissociation Enthalpies for Transition-Metal Hydrides

hydride	temp range of rate measurement, °C	wavelength monitored, nm	k _н , М⁻¹ ѕ⁻¹	ΔH^* , kcal/mol	$\Delta S^*,$ eu	BDE, ^a kcal/mol
HFe(CO) ₂ Cp	-35/-5	525	12000 (400)	5.7 (1)	-20.8 (5)	58
HFe(CO) ₂ Cp*	0/45	558	300 (8)	7.3 (3)	-23 (1)	
HCr(CO) ₃ Cp	0/50	523	335 (2)	5.75 (5)	-27.7 (2)	62
HRu(CO) ₂ Cp	25/65	523	1030 (30)	7.1 (2)	-21 (1)	65
HCo(CO) ₄	-35	525	1600 (900) ^b			67
HMn(CO) ₅ ^c	-40/50	523	741 (8)	7.00 (5)	-22.0 (2)	68
HMo(CO) ₃ Cp*	30/60	540 🧹	13.9 (5)	7.7 (3)	-27.4 (8)	69
HMo(CO) ₃ Cp	0/50	542	514 (2)	5.76 (5)	-26.8 (2)	70
$HMn(PEtPh_2)(CO)_4$	50	530	<3			71 ^d
HW(CO) ₃ Cp	20/60	500	91 (1)	6.66 (8)	-27.2 (2)	73
H ₂ Os(CO) ₄	30/70	530 🔸	15.7 (7)	8.7 (3)	-24 (1)	78°

Table I. Second-Order Rate Constants for Reaction with CPS, Bond Dissociation Energies of the M-H Bond, and Relative k_3 Values

Correlation of M–H BDE and rate: exceptions!

BDE is important because it influences rate of reaction with alkene, much like pKa influences rate of reactivity with a base

opposite correlation: as BDE decreases, rate decreases not BDE for either: sterics alkene electronics also affect MHAT rate

Correlation of viscosity and product distribution

E. N. Jacobsen and R. G. Bergman, J. Am. Chem. Soc., 1985, 107, 2023–2032.

b. Hydrogenation and hydroformylation of cyclopropenes with [Mn]-H

F. Ungvary and L. Mark´o, *J. Organomet. Chem.*, **1983**, *249*, 411–414. Y. Matsui and M. Orchin, *J. Organomet. Chem.*, **1983**, *244*, 369–373.

microviscosity better predicts cage effects than bulk solvent parameters

Tyler et al. J. Am. Chem. Soc., 2016, 138, 9389-9392.

Correlation of concentration and product distribution

Figure 5. Effect of reaction concentration on the yield of the cyclic isomer vs. linear isomer. [a] Yield determined by ¹H NMR analysis of the crude reaction mixture. ND = not determined.

Matos et al., Angew. Chem. Int Ed., 2020, 107, 2023-2032.

Rates of movement within cage

Rates of movement within cage

The temperatures at which their half lives are 10 h are indicated by $T_{1/2}$

0.0-

0

20

40

T (°C)

60

80

no regioisomeric scrambling!! β-H abstraction is not competitive

Scheme 17 Molecular rotation occurs on the same timescale as cage collapse.

A. Gridnev, S. D. Ittel, B. B. Wayland and M. Fryd, Organometallics, 1996, 15, 5116.

Low energy hydrometalation with no M–H cis-vacant site

Figure 2. Energy changes (kcal mol⁻¹) for hydrogen-atom transfer from 'C(CH₃)₂CN to [Co^{II}(por)]' along with diagnostic Co–H, Co–C, C–C, and C–H internuclear distances (results taken from Table 2). a) Enthalpy change (ΔH°) and internal energy change (ΔE_{ZPE}); b) free-energy change (ΔG°_{298K}).

MHAT to non-conjugated alkenes?

Bullock, R. M.; Samsel, E. G. J. Am. Chem. Soc. 1987, 109, 6542.

"To our knowledge this is the first direct experimental evidence for hydrogen atom transfer from a metal hydride to an alkene which cannot form a stabilized benzylic or allylic intermediate"

Slow, but general?

MHAT to non-conjugated alkenes?

Drago et al. J. Am. Chem. Soc. 1982, 104, 6782

Mukaiyama et al. Chem. Lett. 1989, 449 & 1071

See: J. Am. Chem. Soc. 2014, 136, 1300; J. Am. Chem. Soc. 2014, 136, 16788.

Organometallic is not an "intermediate" but rather lies off-cycle (!!). Contrast to J. Am. Chem. Soc. 2006, 128, 11693.

Implications of MHAT to unconjugated alkenes

Proposal: A MHAT elementary step, not coordinative hydrometalation, underlies Drago-Mukaiyama hydrofunctionalization reactions

a) MHAT to alkenes

MHAT mechanism explains:

1) exclusive Markovnikov selectivity

2) intermediacy of carbon-centered radicals

3) low sensitivity to Lewis basic functional groups

4) low sensitivity to alkene substitution

b) Coordinative hydrometallation followed by M-C bond homolysis

- 2) reactivity of complexes without an open coordination site cis to M-H (cf. Ref. 33)
- low sensitivity to Lewis basic functional groups

Implications: MHAT elementary step requires weak M-H bonds, which would be thermodynamically unstable to bimolecular H_2 evolution.

a) Thermochemistry of MHAT to alkenes

 $\Delta G^{\circ}_{MH} < 50$ kcal/mol

BDE_{CH} = 35-40 kcal/mol

- MHAT operates in equilibrium; $K_{MHAT} = e^{-[(BDE_{CH} \Delta G^{\circ}_{MH})/RT]}$ (see Ref. 2, 27, 58)
- Weakest stable metal hydride, H–V(CO)₄(dppb): $\Delta G^{\circ}_{MH} = 50.3$ kcal/mol no MHAT to unactivated alkenes because $\Delta\Delta G^{\circ} = \sim 10-15$ kcal/mol (see Ref. 58)
- Therefore, MHAT to unactivated alkenes may require $\Delta G^{\circ}_{MH} < 50$ kcal/mol Acc. Chem. Res. 2018, 51, 2628.

b) Thermochemistry of biomolecular H₂ evolution

H-H + 2[M] 2 [M]—H

 $\Delta G^{\circ}_{MH} < 56 \text{ kcal/mol}$ BDE_{H2} = 104 kcal/mol

- H₂ evolution is spontaneous when $\Delta G^{\circ}_{MH} < 56$ kcal/mol (see Ref. 60)
- H₂ evolution becomes increasingly favorable as ΔG°_{MH} decreases
- · For a productive reaction, MHAT to alkenes must outcompete H₂ evolution

Why would MHAT occur to form an unstabilized radical?

Shenvi and Holland groups: Chem. Sci. 2020, 11, 12401.

Why do we care?

Markovnikov Functionalization by Hydrogen Atom Transfer" Organic Reactions 2019, 100, 383. (already outdated)

Direct generation of radical from alkene (!!) and capture

Strong Field vs. Weak Field MHAT Similarities

Markovnikov selectivity/ radical

Nojima et al. Org. Lett. 2002, 4, 3595.

estimate based on [Mn] hydrogenation: 60 M⁻¹s⁻¹

Reversible (in some cases)

Crossley et al. J. Am. Chem. Soc. 2014, 136, 16788.

Relative rates: radical stability, contrasteric

Nojima et al. J. Org. Chem. 2005, 70, 251.

Strong Field vs. Weak Field MHAT Similarities

isolable M–H or H₂

Obradors et al. J. Am. Chem. Soc. 2016, 138, 4962.

Pronin et al. J. Am. Chem. Soc. 2019, 141, 17527.

Reductant

i-PrOH, NaBH₄, NaBH₃CN, PhSiH₃, AIBN

Strong Field vs. Weak Field MHAT Similarities

isolable M-H or H₂

Summary

- 1. Definition and differentiation
- 2. Early work, hypotheses and development of understanding (Iguchi, Burnett, King/Winfield, Kwiatek, Jackman)
- 3. Halpern experiments: equilibrium outer-sphere exchange vs. 1,4-coordination
- 4. Inverse KIE
- 5. CIDNP
- 6. Relative rates
- 7. Cage pair implications: viscosity
- 8. Cage pair implications: stereoselectivity can be imperfect
- 9. Can HAT occur on non-conjugated alkenes? Bullock precedent; Drago-Mukaiyama reactions: elementary steps?
- 10. Crossley isomerization and AIBN use as hydride source (prior studies invoked organometallic as intermediate)
- 11. Implications of the generality of this rxn: Si-H, energetics, hydrogen evolution, Norton L-H
- 12. Examples of reactions/ differences