Light Synthesis of Azetidines

nature catalysis

6

Article

https://doi.org/10.1038/s41929-024-01206-4

Radical strain-release photocatalysis for the synthesis of azetidines

Received: 8 February 2024

Accepted: 17 July 2024

Ricardo I. Rodríguez¹, Vasco Corti ©¹, Lorenzo Rizzo ©¹, Stefano Visentini ©¹, Marco Bortolus ©¹, Agnese Amati², Mirco Natali ©², Giorgio Pelosi ©³, Paolo Costa ©¹ & Luca Dell'Amico ©¹⊠

Published online: 14 August 2024

Nat. Catal. 2024, 10.1038/s41929-024-01206-4

ORGANIC CHEMISTRY

Visible light-mediated aza Paternò-Büchi reaction of acyclic oximes and alkenes to azetidines

Emily R. Wearing¹, Yu-Cheng Yeh¹, Gianmarco G. Terrones²†, Seren G. Parikh¹†, Ilia Kevlishvili², Heather J. Kulik^{2,3}*, Corinna S. Schindler^{1,4,5,6}*

The aza Paternò–Büchi reaction is a [2+2]-cycloaddition reaction between imines and alkenes that produces azetidines, four-membered nitrogen-containing heterocycles. Currently, successful examples rely primarily on either intramolecular variants or cyclic imine equivalents. To unlock the full synthetic potential of aza Paternò–Büchi reactions, it is essential to extend the reaction to acyclic imine equivalents. Here, we report that matching of the frontier molecular orbital energies of alkenes with those of acyclic oximes enables visible light–mediated aza Paternò–Büchi reactions through triplet energy transfer catalysis. The utility of this reaction is further showcased in the synthesis of *epi*-penaresidin B. Density functional theory computations reveal that a competition between the desired [2+2]-cycloaddition and alkene dimerization determines the success of the reaction. Frontier orbital energy matching between the reactive components lowers transition-state energy (ΔG^{\ddagger}) values and ultimately promotes reactivity.

Science 2024, 1468

🚫 Scripps Research

Juan Rojas GM 19th Oct 2024

The Papers

Nat. Catal. 2024, 10.1038/s41929-024-01206-4

Science **2024**, 1468

Why bother about azetidines?

Some useful references: RSC Med. Chem. 2021, 448; Chem. Rev. 2014, 8257; Arc. Pharm. 2021, e2100062; ACIE 2010, 3524; JOC 2019, 1363; Bioorg. Med. Chem. Lett. 2012, 6469; J. Med. Chem. 2019, 4936; ACS Med. Chem. Lett. 2020, 303; J. Med. Chem. 2020, 88.

How to access azetidines

Building the ring

VS.

Functionalizing the ring

Popular ways of building azetidines

Reviews: OBC 2021, 3274; Chem. Rev. 2008, 3988. Chem. Sci. 2020, 7553; Chem. Eur. J. 2023, e202300008.

Functionalization of azetidinone derivatives

and James A. Bull*

Peerawat Saejong, [®] ^a Juan J. Rojas, [®] ^a Camille Denis,^{a,b} Andrew J. P. White, [®] ^a Anne Sophie Voisin-Chiret, [®] ^b Chulho Choi [®] ^c and James A. Bull [®] *^a

Functionalization of azetidinone derivatives

2. Reductive amination

Examples: *J. Med. Chem.* **2024**, 2712; *Eur. J. Med. Chem.* **2024**, 116011; *J. Med. Chem.* **2024**, 2321.

3. Conjugate addition

Examples: *Molecules* **2023**, 1091; *Chem. Eur. J.* **2024**, e202400308; *Chin. J. Chem.* **2024**, 1341. 4. Cycloadditions

Examples: *Org. Lett.* **2024**, 2888; *Nat. Catal.* **2024**, 307.

5. Addition into sulfinimines

Org. Lett. 2011, 3912.

Paper 1: radical addition into ABBs

nature catalysis

9

Article

https://doi.org/10.1038/s41929-024-01206-4

Radical strain-release photocatalysis for the synthesis of azetidines

Received: 8 February 2024

Accepted: 17 July 2024

Ricardo I. Rodríguez¹, Vasco Corti ©¹, Lorenzo Rizzo ©¹, Stefano Visentini ©¹, Marco Bortolus ©¹, Agnese Amati², Mirco Natali ©², Giorgio Pelosi ©³, Paolo Costa ©¹ & Luca Dell'Amico ©¹⊠

Published online: 14 August 2024

- Born in Carrara, Italy.
- 2010: MSc in MedChem Parma U.
- 2010–2014: PhD, Parma U. with Prof. Franca Zanardi.
- 2014–2016: PostDoc ICIQ with Prof. Paolo Melchiorre.
- 2016–now: independent career University of Padova.

Asymmetric organocatalysis Mechanistic investigations Photocatalysis

(Aza)bicyclo[1.1.0]butanes (ABBs)

Reviews: OBC 2020, 5798; Chem. Eur. J. 2023, e202300008.

Reaction discovery

Reaction development

Requirements for the PS:

- Sufficiently high $T_1 E_{0,0}$ (>2.55 eV)
- Very low ΔST
- → rapid $S_1 \rightarrow T_1$ (ISC) and $T_1 \rightarrow S_1$ (RISC)
- \rightarrow lower [PS T₁]
- → lower [imine radical]
- \rightarrow slower rate of dimerization (4)

Selected scope

72%

61%

(7:3 dr)

Me

71% (from celecoxib)

Ph

Ph

Me

3-Component reactions

Mechanistic experiments

PS* is guenched by sulfonyl imine. ٠

b

8

7

6

5

з

2

0

1/01

- Quench by ABB slower $(3.8 \times 10^6 \text{ M}^{-1} \text{ s}^{-1})$. ٠
- Left: reaction of PS* with 2 leads to new species (presumably 10 + 11), but decay faster than formation.
- Middle: ABB added. At 50 ns, radical 10 (410 nm); at 750 ns, new species (presumably 12 (435 nm)). •
- Right: increased intensity with higher [ABB], decay attributed to reaction of 12 with 11. ٠

Laser Flash Photolysis

Mechanistic experiments

PS* is guenched by sulfonyl imine. ٠

b

8

7

6

5

з

2

0

1/01

- Quench by ABB slower ($3.8 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$). ٠
- Left: reaction of PS* with 2 leads to new species (presumably 10 + 11), but decay faster than formation.
- Middle: ABB added. At 50 ns, radical 10 (410 nm); at 750 ns, new species (presumably 12 (435 nm)). •
- Right: increased intensity with higher [ABB], decay attributed to reaction of 12 with 11. ٠

Mechanistic experiments

- In the absence of ABB (1), EPR shows sulfonyl (10) and iminyl radicals (11) blue signal, left graph.
- With ABB (1), EPR consistent with 70% azetidine radical (12), 10% sulfonyl (10) and 20% iminyl radical (11) red signal, both graphs.

Summary

- First radical strain-release reaction of ABBs.
- Nice rationale (Δ ST) to develop reaction, including a new photosensitizer.
- Thorough spectroscopic studies (SV, EPR, LFP).
- Promising development of 3-component reaction.
- → Important fundamental blueprint for the radical reactivity of ABBs.

Future directions?

- Other radical precursors apart from sulfonyl imines?
- Other radical traps for the azetidine radical? For example, ArNi(II), Michael acceptors, etc.

Paper 2: aza-PB with acyclic oximes and alkenes

ORGANIC CHEMISTRY

Visible light-mediated aza Paternò-Büchi reaction of acyclic oximes and alkenes to azetidines

Emily R. Wearing¹, Yu-Cheng Yeh¹, Gianmarco G. Terrones²+, Seren G. Parikh¹+, Ilia Kevlishvili², Heather J. Kulik^{2,3}*, Corinna S. Schindler^{1,4,5,6}*

The aza Paternò–Büchi reaction is a [2+2]-cycloaddition reaction between imines and alkenes that produces azetidines, four-membered nitrogen-containing heterocycles. Currently, successful examples rely primarily on either intramolecular variants or cyclic imine equivalents. To unlock the full synthetic potential of aza Paternò–Büchi reactions, it is essential to extend the reaction to acyclic imine equivalents. Here, we report that matching of the frontier molecular orbital energies of alkenes with those of acyclic oximes enables visible light–mediated aza Paternò–Büchi reactions through triplet energy transfer catalysis. The utility of this reaction is further showcased in the synthesis of *epi*-penaresidin B. Density functional theory computations reveal that a competition between the desired [2+2]-cycloaddition and alkene dimerization determines the success of the reaction. Frontier orbital energy matching between the reactive components lowers transition-state energy (ΔG^{\ddagger}) values and ultimately promotes reactivity.

The paper in short: first intermolecular aza Paternò-Büchi with acyclic oximes —

- Born in Schwäbisch Hall, Germany.
- 2004: MSc in Chem., TU München
- 2005–2010: PhD, ETHZ with Prof. Erick Carreira.
- 2010–2013: PostDoc at Harvard with Prof. Eric Jacobsen.
- 2013–2024: Professor at University of Michigan.
- 2024-now: Professor at UBC, Vancouver.

Catalytic methods Total synthesis Biological applications

- 2004: BE in Chem. Eng., Cooper Union.
- 2009: PhD, MIT with Prof. Nicola Marzari.
- 2010: PostDoc at Lawrence Livermore with Prof. Felice Lightstone.
- 2013: PostDoc at Stanford with Prof. Todd Martínez.
- 2013–now: Professor at MIT.

Computational chemistry Chemical engineering Materials science

Paternò-Büchi and aza Paternò-Büchi

Reviews: ACIE 2023, e202217210; Photochem. Photobiol. Sci. 2019, 2297; Chem. Sci. 2020, 7553; Chem. Soc. Rev. 2021, 1617.

Aza Paternò-Büchi via alt. mechanisms

[2+2] Photocycloaddition via a singlet exciplex intermediate (proposed)

[2+2] Photocycloaddition via Cu(I)-alkene MLCT

This paper: activated alkenes and activated acyclic oximes, intermolecular

Science **2024**, 1468.

67%, >1.2:1 dr

Reaction design

Idea: use both activated alkenes and activated acyclic oximes to match the energy of frontier orbitals and favor the aza PB pathway:

Initial hit:

Reaction optimization

Table S1: Screen for optimal solvent and photocatalyst combinations.

Entry Number	Solvent	Catalyst	Yield
1	Toluene	2CzPN	5%
2	Toluene	4DPAIPN	0%
3	Toluene	2,2'-MeOTx	12%
4	Toluene	[Ir(dF(CF3)ppy)2(dtbbpy)]PF6	3%
5	Toluene	fac-Ir(dFppy) ₃	8%
6	Toluene	<pre>[Ir(dFppy)2(dtbbpy)]PF6</pre>	5%
7	Toluene	fac-Ir(Fppy)3	13%
8	Toluene	fac-Ir(4'-CF ₃ -ppy) ₃	6%
9	Acetonitrile	2CzPN	3%
10	Acetonitrile	4DPAIPN	0%
11	Acetonitrile	2,2'-MeOTx	15%
12	Acetonitrile	[Ir(dF(CF3)ppy)2(dtbbpy)]PF6	12%
13	Acetonitrile	fac-Ir(dFppy) ₃	5%
14	Acetonitrile	[Ir(dFppy)2(dtbbpy)]PF6	4%
15	Acetonitrile	fac-Ir(Fppy) ₃	11%
16	Acetonitrile	fac-Ir(4'-CF ₃ -ppy) ₃	7%
17	Dichloromethane	2CzPN	5%
18	Dichloromethane	4DPAIPN	0%
19	Dichloromethane	2,2'-MeOTx	12%
20	Dichloromethane	[Ir(dF(CF3)ppy)2(dtbbpy)]PF6	11%
21	Dichloromethane	fac-Ir(dFppy) ₃	11%
22	Dichloromethane	<pre>[Ir(dFppy)2(dtbbpy)]PF6</pre>	12%
23	Dichloromethane	fac-Ir(Fppy)₃	18%
24	Dichloromethane	fac-Ir(4'-CF ₃ -ppy) ₃	5%
25	1:1 Acetonitrile/water	2CzPN	4%
26	1:1 Acetonitrile/water	4DPAIPN	0%
27	1:1 Acetonitrile/water	2,2'-MeOTx	29%
28	1:1 Acetonitrile/water	[Ir(dF(CF ₃)ppy) ₂ (dtbbpy)]PF ₆	34%
29	1:1 Acetonitrile/water	fac-Ir(dFppy) ₃	27%
30	1:1 Acetonitrile/water	<pre>[Ir(dFppy)2(dtbbpy)]PF6</pre>	25%
31	1:1 Acetonitrile/water	fac-Ir(Fppy) ₃	21%
32	1:1 Acetonitrile/water	fac-Ir(4'-CF ₃ -ppy) ₃	42%
33	1:1 Acetonitrile/water	Thioxanthone	34%
34	1:1 Acetonitrile/water	2-F,2'MeOTX	15%
35	Methanol	2,2'MeOTx	4%
36	Methanol	[Ir(dF(CF3)ppy)2(dtbbpy)]PF6	17%
37	Methanol	fac-Ir(Fppy) ₃	0%
38	Methanol	fac-Ir(4'-CF ₃ -ppy) ₃	3%
39	1:1 Acetone/water	fac-Ir(4'-CF ₃ -ppy) ₃	45%
40	1:1 THF/water	fac-Ir(4'-CF ₃ -ppy) ₃	37%
41	1:1 Acetonitrile/water	[Ru(bpz) ₃](PF ₆) ₂	0%
42	1:1 Acetonitrile/water	[Ru(bpy) ₃]Cl ₂ -6H ₂ O	0%
43	1:1 Acetonitrile/water	[Ru(phen)3](PF6)2	0%
44	1:1 Acetonitrile/water	[Ru(bpy) ₃](PF ₆) ₂	0%
45	1:1 Acetonitrile/water	[Ru(bpm) ₃]Cl ₂	0%

Table S11: Impact of styrene treatment on yield

Entry	Styrene Source	Yield
1	bottle- added before sparge	66%
2	bottle- added after sparge	73%
3	degassed (Stored in freezer for ~ 1 month)	72%
4	freshly degassed with FPT	65%
5	washed to remove stabilizer	73%
6	styrene double addition (bottle) 2.5 equiv. at t = 0 h and t = 2 h	69%
7	styrene double addition (bottle) 2.5 equiv. at t = 0 h and t = 4 h	77%
8	styrene double addition (bottle) 2.5 equiv. at t = 0 h and t = 6 h	83%
9	styrene double addition (bottle) 2.5 equiv. at t = 0 h and t = 8 h	77%

Table S2: Further optimization experiments for the reaction conditions utilizing a water/acetonitrile solvent mixture and fac-Ir(4'-CF₃-ppy)₃.

Entry Number	Change from Initial condition	Yield
1	none	42%
2	0.5 h	13%
3	1 h	20%
4	2 h	40%
5	3 h	38%
6	4 h	42%
7	6 h	35%
8	60 h	14%
9	10% water in acetonitrile	12%
10	25% water in acetonitrile	0%
11	75% water in acetonitrile	50%
12	100% water	19%
13	3.0 equiv. styrene	48%
14	additional 1.5 equiv. styrene added after 2 h	29%
15	slow addition of organics to water over 4 h	46%
16	neat reaction, no solvent	51%
17	1.0 M acetonitrile, no water	42%
18	2.0 M acetonitrile, no water	46%
19	5.0 M acetonitrile, no water	53%

$$BnO \underset{H}{\overset{N^{*}OBn}{\xrightarrow{}}} + \underset{R}{\overset{[Ir(dF(CF))ppy/Ir(dbbpy)]PFs}} \xrightarrow{(1 mol%)} + \underset{V}{\overset{A^{*}}{\xrightarrow{}}} \xrightarrow{OBn} OBn$$

Conditions: solvent (sparged) (1.0 M), styrene (2.0 equiv.), 427 nm wavelength irradiation, 20-24 h reaction time.

Table S6: Evaluation of HFIP Optimal Condition with electron-poor and electron-rich substrates.

Entry Number	R	Solvent	Yield
1*	-H	HFIP	84%
2	-OMe	HFIP	0% by NMR*
3	-OMe	CH ₃ CN	78%
4	-F	HFIP	81%
5	-F	CH ₃ CN	75%
*465 nm, *isolated yield ~15	%		

Table S9: Catalyst and wavelength optimization for acetonitrile conditions.

Entry	Catalyst Loading	Wavelength	Yield
1	2 mol%	427 nm	76%
2	1 mol%	427 nm	74%
3	0.5 mol%	427 nm	66%
4	0.25 mol%	427 nm	69%
5	2 mol%	465 nm	79%
6	1 mol%	465 nm	70%
7	0.5 mol%	465 nm	57%

Table S3: Optimization of photocatalysts with HFIP as solvent.

Yield

65% 59% 62% 55%

47% 0% 63% 17% 43% 39% 57%

7%

Table S7: Photocatalyst combinations with acetonitrile and THF.

Entry Number	Catalyst	Solvent	
1	[lr(dF(CF3)ppy)2(dtbbpy)]PF6	acetonitrile	
2*	[Ir(Fppy)2(dtbbpy)]PF6	acetonitrile	
3	[lr(dFppy) ₂ (dtbbpy)]PF ₆	acetonitrile	
4	fac-Ir(dFppy)3	acetonitrile	
5	fac-Ir(Fppy)3	acetonitrile	
6	fac-lr(ppy)3	acetonitrile	
7	<pre>[Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆</pre>	THF	
8	<pre>[Ir(Fppy)2(dtbbpy)]PF6</pre>	THF	
9	[lr(dFppy)2(dtbbpy)]PF6	THF	
10	fac-Ir(dFppy)3	THE	
11	fac-Ir(Fppy)3	THF	
12	fac-Ir(ppy)3	THF	
Run on a 0.050 mmol	ecolo		

BnO H + (1 mol%) HFIP, CH₂CN (2 M), 427 nm, 18 h

Table S12: Probing HFIP as a potential additive.

Entry	R Group	HFIP Loading	Yield
1	-H	0 equiv.	76%
2	-H	1.0 equiv.	78%
3	-H	5.0 equiv.	80%
4	-OMe	0 equiv.	69%
5	-OMe	1.0 equiv.	65%
6	-OMe	5.0 equiv.	22%

 $\label{eq:constraint} \begin{array}{l} \textit{Original condition: HFIP (0.5 M), [Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6 (1 mol\%), styrene (5.0 equiv.), R = -Et, 427 nm irradiation, 20-24 h. \end{array}$

Table S4: Further optimization of HFIP conditions.

-N-OBn

CO₂Et

Entry	Change from Original Condition	Yield
1	none	59%
2	Neat reaction – no solvent	56%
3	2.0 equiv. styrene	45%
4	/PrOH as solvent (no HFIP)	49%
5	2.0 equiv. HFIP additive with THF solvent	16%
6	2.0 equiv. HFIP additive with CH ₃ CN as solvent	34%
7	2.0 equiv. HFIP additive with DCM as solvent	44%
8	2.0 equiv. HFIP additive with MeOH as solvent	29%
9	2.0 equiv. HFIP additive with toluene as solvent	24%
10	2.0 equiv. HFIP additive with DCE as solvent	16%
11	2.0 equiv. HFIP additive with acetone as solvent	16%
12	456 nm*	68%
13	R = -Bn	79%
14	R = -Bn, 465 nm (SynLED reactor)	61%
run for 16 hours		

Table S8: Concentration and styrene loading screen in acetonitrile.

Entry	Styrene Loading	Concentration	Yield
1	5.0 equiv.	1 M	70%
2	5.0 equiv.	2 M	78%
3	2.0 equiv.	1 M	64%
4	2.0 equiv.	2 M	61%
5	2.0 equiv.	2 M	58%
6	2.5 equiv.	2 M	64%
7	3.0 equiv.	2 M	64%
8	4.0 equiv.	2 M	71%
9	5.0 equiv.	2 M	72%

Original Conditions: HFIP (degassed by freeze-pump-thaw) (1.0 M), [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (1 mol %), styrene (2.0 equiv.), 465 nm irradiation, 20 h.

Table S5: Final optimization of conditions in HFIP.

Entry	Change from Original Condition	Yield
1	none	84%
2	10.0 equiv. styrene	69%
3	5.0 equiv. styrene	79%
4	2.5 equiv. styrene	86%
5	1.0 equiv. styrene	60%
6	0.25 M	73%
7	0.5 M	78%
8	2.0 M	83%
9	1 h	15%
10	2 h	29%
11	4 h	47%
12	6 h	63%
13	16 h	73%
14	20 h	75%
15	24 h	76%
16	48 h	55%
17	456 nm Kessil lamp	56%
18	sparging HFIP rather than freeze pump thaw HFIP	84%
19	456 nm low intensity	70%
20	acetonitrile as solvent	62%

Reaction optimization

Round 4 and beyond

- 1. Switched to CO₂Bn oxime because higher yielding.
- 2. DoE with HFIP as solvent.
- 3. HFIP incompatible with electron-rich styrenes \rightarrow change to MeCN.
- 4. DoE with MeCN and final optimization.

Selected scope

F₃C

33%, 1.4:1 dr

49%, 1:1 dr

OBn CO₂PMB

31%, 6.4:1 dr

48%, single isomer

55%, 1.2:1 dr

57%, 1:1 dr

MeO

17%, 1.5:1 dr

Ö

OBn

26%, 2.2:1 dr

Unsuccessful substrates

Alkenes

cyclic heteroaromatic compounds

highly conjugated alkenes

steric hindrance

unactivated alkene

Oximes

other incompatability

Me OBn

NOBn

unactivated oxime

isoxazoline

unprotected oxime

ketone-derived acyclic oximes

aryl oximes

Application

Mechanistic studies

A Oxime and alkene sensitization and products

EnT with photocatalyst more likely than RedOx events

- 1. CV data
- 2. Photocatalysts with different RedOx potentials.

Which substrate is sensitized?

EnT with photocatalyst more likely than RedOx events

- 1. CV data
- 2. Photocatalysts with different RedOx potentials.

Which substrate is sensitized?

EnT with photocatalyst more likely than RedOx events

- 1. CV data
- 2. Photocatalysts with different RedOx potentials.

Sensitization of styrene most likely for productive pathway

- 1. Stern–Volmer analysis
- 2. 5 equivalents of styrene required.

Reaction Energy Diagram

Requirement for desired reactivity

favorable ${\rm \Delta}{\rm \Delta} G^{\ddagger}$ allows competition between desired heterocycloaddition and undesired dimerization reaction

 $\begin{array}{l} \text{Competitive } {}_{\Delta} \textbf{G}^{\texttt{+}} \text{ required for azetidine formation} \\ \text{Low } {}_{\Delta} \textbf{G}^{\texttt{+}} \text{ enabled by low } {}_{\Delta} \textbf{E}_{\text{FO}} \end{array}$

Requirement for high yields

• 44 (100%)

• 21 (37%)

12 (68%)

•

Summary

- Modular synthesis of di, tri and tetra-substituted azetidines.
- \rightarrow Seems very useful for library-generation in MedChem.
- First useful strategy for monocyclic aza Paternò-Büchi.
- Thorough documentation (optimization, failed substrates...)
- Thorough mechanistic study gives fundamental insight into the underlying factors that control reactivity.
- \rightarrow Actually useful for future practitioners to choose substrates likely to work.
- \rightarrow Concepts potentially applicable to [2+2] photoredoxcatalyzed reactions in general.

Future directions?

- Find a way to expand scope to non-activated alkenes.
- Other activated imines (non-ester oximes, sulfinimines [Ellman!], sulfonyl imines, hydrazones...)
- Apply mechanistic concept of ΔE_{FO} to other [2+2] cycloadditions (PB, hetero alkene [2+2]).

Light Synthesis of Azetidines

nature catalysis

6

Article

https://doi.org/10.1038/s41929-024-01206-4

Radical strain-release photocatalysis for the synthesis of azetidines

Received: 8 February 2024

Accepted: 17 July 2024

Ricardo I. Rodríguez¹, Vasco Corti ©¹, Lorenzo Rizzo ©¹, Stefano Visentini ©¹, Marco Bortolus ©¹, Agnese Amati², Mirco Natali ©², Giorgio Pelosi ©³, Paolo Costa ©¹ & Luca Dell'Amico ©¹⊠

Published online: 14 August 2024

Nat. Catal. 2024, 10.1038/s41929-024-01206-4

ORGANIC CHEMISTRY

Visible light-mediated aza Paternò-Büchi reaction of acyclic oximes and alkenes to azetidines

Emily R. Wearing¹, Yu-Cheng Yeh¹, Gianmarco G. Terrones²†, Seren G. Parikh¹†, Ilia Kevlishvili², Heather J. Kulik^{2,3}*, Corinna S. Schindler^{1,4,5,6}*

The aza Paternò–Büchi reaction is a [2+2]-cycloaddition reaction between imines and alkenes that produces azetidines, four-membered nitrogen-containing heterocycles. Currently, successful examples rely primarily on either intramolecular variants or cyclic imine equivalents. To unlock the full synthetic potential of aza Paternò–Büchi reactions, it is essential to extend the reaction to acyclic imine equivalents. Here, we report that matching of the frontier molecular orbital energies of alkenes with those of acyclic oximes enables visible light–mediated aza Paternò–Büchi reactions through triplet energy transfer catalysis. The utility of this reaction is further showcased in the synthesis of *epi*-penaresidin B. Density functional theory computations reveal that a competition between the desired [2+2]-cycloaddition and alkene dimerization determines the success of the reaction. Frontier orbital energy matching between the reactive components lowers transition-state energy (ΔG^{\ddagger}) values and ultimately promotes reactivity.

Science 2024, 1468

🚫 Scripps Research

Juan Rojas GM 19th Oct 2024