Organofluorine Chemistry

Julien Lee Heberling Shenvi Lab Department of Chemistry Scripps Research Seminar 22 March 2025

Contents

- Introduction
 - Etymology
 - Brief history & general use
- Physical properties
 - Conformation: the gauche effect
 - Acidity through-bond vs through-space
 - Aromaticity
- · Implications in synthesis & beyond
 - Fluorinated substrates
 - Fluorinated catalysts
 - Fluorinated drug molecules
 - Fluorspar \rightarrow fluorinated products
- Summary

Introduction

Etymology

aggressive nature. By contrast, the names chlorine, bromine, iodine [...] and astatine do reveal obvious characteristics.

R. E. Banks

Banks, R. E. J. Fluor. Chem. 1986, 33, 3

Brief History

Banks, R. E. *J. Fluor. Chem.* **1986**, *33*, 3 Okazoe, T. *Proc. Jpn. Acad.* **2009**, *85*, 276 edu.rsc.org/feature/the-discovery-of-fluorine/2020249.article Dehnen, S.; Schafer, L. L.; Lectka, T.; Togni, A. *J. Org. Chem.* **2021**, *86*, 16213

Provenance and Use

- Fluorine abundant in the form of fluorspar (CaF₂)
- Synthesis of HF, precursor to fluorinated products
- Fluorinase: only known enzyme to perform fluorination
- Only 5 known naturally-occurring organofluorine compounds

Metallurgical flux

- · Optical lenses, glass etching
- PTFE (Teflon)
- Toothpaste for dental health
- Fluorine present in ≈ 20% of all pharmaceuticals
- Fluorine present in ≈ 30 to 40% of agrochemicals

 $Ca_{10}(PO_4)_6(OH)_2 \xrightarrow{F^-} Ca_{10}(PO_4)_6F_2$

Fluoroapatite strengthens enamel

Common Fluorinating Reagents

Physical Chemistry

Physical Properties

- Lightest halogen
 - Group 7
 - Period 2
- -219.67 °C = melting point
 -188.11 °C = boiling point
- Pale yellow-green gas
- Most electronegative element on the periodic table

ptable.com periodic-table.rsc.org/element/9/fluorine Ibrahim, M. A. A.; Moussa, N. A. M. ACS Omega 2020, 5, 21824 Physical Properties: Electronegativity

periodic-table.rsc.org/element/9/fluorine Ibrahim, M. A. A.; Moussa, N. A. M. *ACS Omega* **2020**, *5*, 21824

Physical Properties: Bond Enthalpy

Bond enthalpy (kJ \cdot mol⁻¹)

Bond identity	X = F		X = CI	X = Br	X =
X–X	155	<	242	193	151
C–X	485	>	339	285	218
H–X	565	>	431	366	299

periodic-table.rsc.org/element/9/fluorine periodic-table.rsc.org/element/17/chlorine periodic-table.rsc.org/element/35/bromine periodic-table.rsc.org/element/53/iodine Physical Properties: Bond Enthalpy

C–X bond enthalpy $(kJ \cdot mol^{-1})$

X = F	X = H	X = C	X = N	X = <mark>O</mark>
485	413	347	305	358

Fluorine forms strongest bond to carbon

periodic-table.rsc.org/element/9/fluorine periodic-table.rsc.org/element/1/hydrogen periodic-table.rsc.org/element/6/carbon periodic-table.rsc.org/element/7/nitrogen periodic-table.rsc.org/element/8/oxygen Physical Properties: Atomic Radius

Atomic radius (Van der Waals) (pm)

pubchem.ncbi.nlm.nih.gov/ptable/atomic-radius/

Physical Properties: Bond Angle & Length

O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308

Physical Properties: Dipole-Dipole Interactions

Values refer to ΔE (kcal • mol⁻¹)

O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308

Physical Properties: Key Takeaways

- Occupies small space, low steric encumbrance
- High electronegativity
- Strong C–F bond

Conformation: the *Gauche* Effect

Van Schaick, E. J. M.; Geise, H. J.; Miljhoff, F. C.; Renes, G. *J. Mol. Struct.* **1973**, *16*, 23 Aufiero, M.; Gilmour, R. *Acc. Chem. Rev.* **2018**, *51*, 1701 Thiehoff, C.; Rey, Y. P.; Gilmour, R. *Isr. J. Chem.* **2017**, *57*, 92

Conformation: the Gauche Effect

Aufiero, M.; Gilmour, R. *Acc. Chem. Rev.* **2018**, *51*, 1701 Thiehoff, C.; Rey, Y. P.; Gilmour, R. *Isr. J. Chem.* **2017**, *57*, 92 Zimmer, L. E.; Sparr, C.; Gilmour, R. *Angew. Chem. Int. Ed.* **2011**, *50*, 11860

β-Fluoroamine Acidity: Through-Bond

• pK_a lowered by ≈ 1.5 per β -fluorine added

• Inductive effect observed all the way through δ substitution

Hagmann, W. K. *J. Med. Chem.* **2008**, *51*, 4359 Müller, K.; Faeh. C.; Diederich, F. *Science* **2007**, *317*, 1881 Morgenthaler, M.; *et al. ChemMedChem* **2007**, *2*, 1100 β-Fluoroamine Acidity: Through-Space

Values refer to pK_a

Hagmann, W. K. *J. Med. Chem.* **2008**, *51*, 4359 Morgenthaler, M.; *et al. ChemMedChem* **2007**, *2*, 1100 β-Fluoroamine Acidity: Through-Space

Values refer to pK_a

F inductively destabilizes positive charge \rightarrow lowers pK_a

F syn or anti to proton mitigates inductive destabilization

Hagmann, W. K. *J. Med. Chem.* **2008**, *51*, 4359 Morgenthaler, M.; *et al. ChemMedChem* **2007**, *2*, 1100

21

β-Fluoropiperidine Acidity: Through-Space

Lankin, D. C.; Chandrakumar, N. S.; Rao, S. N.; Spangler, D. P.; Snyder, J. P. *J. Am. Chem. Soc.* **1993**, *115*, 3356 Hagmann, W. K. *J. Med. Chem.* **2008**, *51*, 4359 Morgenthaler, M.; *et al. ChemMedChem* **2007**, *2*, 1100 O'Hagan, D. *Chem. Soc. Rev.* **2008**, *37*, 308 Sun, A.; Lankin, D. C.; Hardcastle, K.; Snyder, J. P. *Chem. Eur. J.* **2005**, *11*, 1579

22

Aromaticity

in π system

Electron density inverted in hexafluorobenzene

Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827 Müller, K.; Faeh. C.; Diederich, F. Science 2007, 317, 1881 Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew. Chem. Int. Ed. 2003, 42, 1210 Conformational Effects: Key Takeaways

• Low-lying σ^*_{C-F} bond gives rise to *gauche* effect

 High electronegativity of fluorine enables additional electrostatic interactions

Implications in Synthesis & Beyond

Lewis Acid Catalyzed Diels-Alder Reaction

Shibatomi, K.; Futatsugi, K.; Kobayashi, F.; Iwasa, S.; Yamamoto, H. *J. Am. Chem. Soc.* **2010**, *132*, 5625 Essers, M.; Ernet, T.; Haufe, G. *J. Fluor. Chem.* **2003**, *121*, 163 Cahard, D.; Bizet, V. *Chem. Soc. Rev.* **2014**, *43*, 135

Lewis Acid Catalyzed Diels-Alder Reaction

Shibatomi, K.; Futatsugi, K.; Kobayashi, F.; Iwasa, S.; Yamamoto, H. *J. Am. Chem. Soc.* **2010**, *132*, 5625 Essers, M.; Ernet, T.; Haufe, G. *J. Fluor. Chem.* **2003**, *121*, 163 Cahard, D.; Bizet, V. *Chem. Soc. Rev.* **2014**, *43*, 135 Scott A. Snyder Lecture Notes *The Diels-Alder Reaction*

CBS Reduction

• Anti orientation between sterically encumbered group & engaged O lone pair

• Electronic repulsion between boronate & CF₃ (Corey et al.)

Corey, E. J.; Cheng, X.-M.; Cimprich, K. A.; Sarshar, S. *Tetrahedron Lett.* **1991**, *32*, 6835 Cahard, D.; Bizet, V. *Chem. Soc. Rev.* **2014**, *43*, 135

Organocatalysis: Hirsutene

Chandler, C. L.; List, B. *J. Am. Chem. Soc.* **2008**, *130*, 6737 Zimmer, L. E.; Sparr, C.; Gilmour, R. *Angew. Chem. Int. Ed.* **2011**, *50*, 11860

Organocatalysis: Hirsutene

Model substrate catalyst screen

	В	entry	R	solvent	time [h]	conversion [%] ^a	er ^b	ee (%)
· · · · · · · · · · · · · · · · · · ·		1	Н	DMF	16	60	77:23	54
		2	trans-OH	DMF	24	50	82:18	64
ο	H O	3	trans-OTBS	DMF	15	60	39:61	22 (favoring undesired)
	(20 mol%) _ 【人	4	trans-Ot-Bu	DMF	2	95	80:20	60
solvent (0.5 M)		5	<i>trans</i> -F	DMF	24	75	90:10	80
		6	cis-F	DMF	24	50	79:21	58
	BT OH	7	<i>trans</i> -F	CH ₃ CN	24	50	56:44	12
	111	8	trans-F	DMSO	24	75	91:9	82
Ca	talyst (DMF solvent)	∧ Н со₂н			CO₂H		F CO ₂ H	
ee		54%		58%	5		80%	

Chandler, C. L.; List, B. *J. Am. Chem. Soc.* **2008**, *130*, 6737 Zimmer, L. E.; Sparr, C.; Gilmour, R. *Angew. Chem. Int. Ed.* **2011**, *50*, 11860 Organocatalysis: Epoxidation

Denmark, S. E.; Matsuhashi, H. *J. Org. Chem.* **2002**, *67*, 3479 Aufiero, M.; Gilmour, R. *Acc. Chem. Rev.* **2018**, *51*, 1701 Organocatalysis: Epoxidation

Tanzer, E.-M.; Zimmer, L. E.; Schweizer, W. B.; Gilmour, R. *Chem. Eur. J.* **2012**, *18*, 11334 Aufiero, M.; Gilmour, R. *Acc. Chem. Rev.* **2018**, *51*, 1701

NHC: Stetter Reaction

DiRocco, D. A.; Oberg, K. M.; Dalton, D. M.; Rovis, T. *J. Am. Chem. Soc.* **2009**, *131*, 10872 Aufiero, M.; Gilmour, R. *Acc. Chem. Rev.* **2018**, *51*, 1701

NHC: Stetter Reaction

Determined by X-Ray

Fluoro-NHC favors C_{γ} -exo conformer leading to improved ee

DiRocco, D. A.; Oberg, K. M.; Dalton, D. M.; Rovis, T. *J. Am. Chem. Soc.* **2009**, *131*, 10872 Aufiero, M.; Gilmour, R. *Acc. Chem. Rev.* **2018**, *51*, 1701

Fluorinated Thrombin Inhibitors

Х	Κ _i (μΜ)	Selectivity vs trypsin**
Н	0.31	15
2-F	0.50	9.8
3-F	0.36	26
4-F	0.057	67
2,6-F ₂	0.61	9.0
3,5-F ₂	0.59	25
F_5	0.27	44

Olsen, J. A.; *et al. Angew. Chem. Int. Ed.* **2003**, *42*, 2507 Müller, K.; Faeh. C.; Diederich, F. *Science* **2007**, *317*, 1881 Hagmann, W. K. *J. Med. Chem.* **2008**, *51*, 4359 Fluorinated Thrombin Inhibitors

C=O backbone binding through dipole interactions (3.5 Å) α -CH hydrogen bonding (2.1 Å)

Olsen, J. A.; *et al. Angew. Chem. Int. Ed.* **2003**, *42*, 2507 Müller, K.; Faeh. C.; Diederich, F. *Science* **2007**, *317*, 1881 Hagmann, W. K. *J. Med. Chem.* **2008**, *51*, 4359 Atorvastatin: HMGR Inhibitor

• Inhibits HMGR (HMG-CoA reductase), prevents cholesterol synthesis

• Potency superior to –OH (2x), –OMe (10x), & –H (5x)

• Interacts with Arg⁵⁹⁰ guanidinium sidechain (2.9 Å)

Istvan, E. S.; Deisenhofer, J. *Science* **2001**, *292*, 1160 Roth, B. D.; *et al. J. Med. Chem.* **1990**, *33*, 21 Müller, K.; Faeh. C.; Diederich, F. *Science* **2007**, *317*, 1881 Fluorspar Directly to Organofluorides

Patel, C.; et al. Science 2023, 381, 302

Supplementary Material

Physical Properties: Covalent Radius

Covalent radius (pm)

**Single bond, tetrahedral (CN = 4) structure

Dean, J. A. Lange's Handbook of Chemistry (15th ed.); New York: McGraw-Hill, 1999 (section 4.35)

Fluoride as Leaving Group

O'Hagan, D. *Chem. Soc. Rev.* **2008**, *37*, 308 Chambers, R. D. *Fluorine in Organic Chemistry;* Blackwell Publishing Ltd., Oxford, 2006 (p. 129)

Olefin Metathesis

Percy, J. M.; Pintat, S. *Chem. Comm.* **2000**, 607 Audouard, C.; Fawcett, J.; Griffiths, G. A.; Percy, J. M.; Pintat, S.; Smith, C. A. *Org. Biomol. Chem.* **2004**, 528 Fustero, S.; Simón-Fuentes, A.; Barrio, P.; Haufe, G. *Chem. Rev.* **2015**, *115*, 871

43